Course Type	Course Code	Name of Course	L	T	P	Credit
DP	NCYC505	Chemical Biology Lab	0	0	3	1.5

Course Objective

• To understand the basic experimental techniques in cell and molecular biology

Learning Outcomes

• Students are expected to understand the principle behind cell culture, bacteriology and molecular biology with an aim to enable troubleshooting of techniques.

Uni t No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	General Instructions	3	General instructions for the lab
2	Bacterial transformation	3	Understand bacterial competence and perform DNA transformation into bacteria by heat shock
3	Plasmid isolation from bacteria	3	Practice bacterial culture and isolation of the high copy number plasmids by alkaline lysis
4	Restrictionn Digestion and Agarose Gel Electrophoresis	3	Perform the basic rDNA techniques of cutting DNA and electrophoretic separation of fragments based on size
5	Demonstration of cell culture	3	Understand cell growth, splitting, counting, freezing and storage of cells, thawing and maintenance in CO ₂ incubators.
6	Demonstration of MTT assay	3	Understand how to enumerate cell death using chemotherapeutic drugs that can cause cancer cell death.
7	Live-dead assay using plate reader	3	Another assay for cell number enumeration and cell death enumeration using propidium iodide and calcein AM based assay with plate reader based reading and analysis
8	SDS-Polyacrylamide Gel electrophoresis	3	Separation of proteins based on size followed by visualization using Coomassie staining
9	Western Blotting	3	Antibody based analysis of cellular proteins- Chemiluminescence imaging using a gel documentation instrument
10	ABTS radical cation scavenging assay	3	Understanding how to evaluate antioxidant potential using radical scavenging assay
11	FRAP anti-oxidant assay	3	Understanding how to evaluate antioxidant potential using radical scavenging assay
12	Disc diffusion assay for antibiotic sensitivity	3	Bacterial sensitivity to antibiotics evaluated using disc diffusion.
13	Kinetics of phosphatase	3	Understand enzyme kinetics and analysis parameters using purified phosphatase and PNPP substrate.
14	Polymerase Chain Reaction	3	Perform PCR and analyse amplicon on Agarose gel.
	Total	42L	

Text Books:

Molecular Cloning: A Laboratory Manual, Vols 1,2 and 3-J.F. Sambrook and D.W. Russell **Reference Books:**

Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications by R. Ian Freshney